Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ferromagnetic resonance (FMR) is a broadly used dynamical measurement used to characterize a wide range of magnetic materials. Applied research and development on magnetic thin film materials is growing rapidly alongside a growing commercial appetite for magnetic memory and computing technologies. The ability to execute high-quality, fast FMR surveys of magnetic thin films is needed to meet the demanding throughput associated with rapid materials exploration and quality control. Here, we implement optimal Bayesian experimental design software developed by [McMichael et al. J. Res. Natl. Inst. Stand. Technol. 126, 126002 (2021)] in a vector network analyzer-FMR setup to demonstrate an unexplored opportunity to accelerate FMR measurements. A systematic comparison is made between the optimal Bayesian measurement and the conventional measurement. Reduced uncertainties in the linewidth and resonance frequency ranging from 40% to 60% are achieved with the Bayesian implementation for the same measurement duration. In practical terms, this approach reaches a target uncertainty of ±5 MHz for the linewidth and ±1 MHz for the resonance frequency in 2.5× less time than the conventional approach. As the optimal Bayesian approach only decreases random errors, we evaluate how large systematic errors may limit the full advantage of the optimal Bayesian approach. This approach can be used to deliver gains in measurement speed by a factor of 3 or more and as a software add-on has the flexibility to be added on to any FMR measurement system to accelerate materials discovery and quality control measurements, alike.more » « less
- 
            Abstract Gamma-ray binaries are luminous in gamma rays, composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of teraelectronvolts (TeV). However, it is still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System. We present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cutoff. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 and 118 TeV is modulated by the orbital motion of the system, and find a 2.2σhint of variability above 100 TeV. This indicates that these photons are likely produced within or near the binary orbit, where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ∼200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton–proton or proton–gamma collisions of protons accelerated to petaelectronvolt energies.more » « lessFree, publicly-accessible full text available July 10, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Increased use of technology in schools raises new privacy and security challenges for K-12 students---and harms such as commercialization of student data, exposure of student data in security breaches, and expanded tracking of students---but the extent of these challenges is unclear. In this paper, first, we interviewed 18 school officials and IT personnel to understand what educational technologies districts use and how they manage student privacy and security around these technologies. Second, to determine if these educational technologies are frequently endorsed across United States (US) public schools, we compiled a list of linked educational technology websites scraped from 15,573 K-12 public school/district domains and analyzed them for privacy risks. Our findings suggest that administrators lack resources to properly assess privacy and security issues around educational technologies even though they do pose potential privacy issues. Based on these findings, we make recommendations for policymakers, educators, and the CHI research community.more » « less
- 
            Abstract The HAWC Observatory collected 6 yr of extensive data, providing an ideal platform for long-term monitoring of blazars in the very high energy (VHE) band, without bias toward specific flux states. HAWC continuously monitors blazar activity at TeV energies, focusing on sources with a redshift ofz≤ 0.3, based on the Third Fermi-LAT Catalog of High-Energy sources. We specifically focused our analysis on Mrk 421 and Mrk 501, as they are the brightest blazars observed by the HAWC Observatory. With a data set of 2143 days, this work significantly extends the monitoring previously published, which was based on 511 days of observation. By utilizing HAWC data for the VHEγ-ray emission in the 300 GeV–100 TeV energy range, in conjunction with Swift-XRT data for the 0.3–10 keV X-ray emission, we aim to explore potential correlations between these two bands. For Mrk 501, we found evidence of a long-term correlation. Additionally, we identified a period in the light curve where the flux was very low for more than 2 yr. On the other hand, our analysis of Mrk 421 measured a strong linear correlation for quasi-simultaneous observations collected by HAWC and Swift-XRT. This result is consistent with a linear dependence and a multiple-zone synchrotron self-Compton model to explain the X-ray andγ-ray emission. Finally, as suggested by previous findings, we confirm a harder-when-brighter behavior in the spectral evolution of the flux properties for Mrk 421. These findings contribute to the understanding of blazar emissions and their underlying mechanisms.more » « lessFree, publicly-accessible full text available February 5, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available